Given an array a[ ] of size n. For each element at position, i find the L[i] and R[i] where – L[i] = the closest index to i where L[closest index] > L[i] and closest index < i. R[i] = the closest index to i where R[closest index] > R[i] and closest index > i. If no such index exists for L[i] or R[i] update it at 0. Find the maximum of product of L and R where – LR Product [i] = L[i] * R[i].
Table of Contents
Example
Input : a[ ] = {5, 4, 3, 4, 5}
Output : 8
Input : a[ ] = {1, 1, 1, 1, 0, 1, 1, 1, 1, 1}
Output : 24
Algorithm
- Initialize an array a[ ] of size n.
- Initialize two other arrays to store the left and right index of the closest greater element.
- Create a stack. Traverse from n-1 to 0 and while stack is not empty and a[current index] is greater than a[stack.top() – 1]), update the left array at index stack.top() – 1 as current index + 1. Pop the top.
- Insert the current index+1 in the stack.
- For right array create a stack. Traverse from 0 to n-1 and while stack is not empty and a[current index] is greater than a[stack.top() – 1]), update the right array at index stack.top() – 1 as current index+1. Pop the top.
- Insert the current index+1 in the stack.
- Create a variable to store answers and initialize it as -1. Traverse from 0 to n-1 and update the answer variable as a maximum of answer variable and product of values at current index in the left array and right array.
- Return the answer variable.
C++ Program to find the maximum product of indexes of next greater on left and right
#include <bits/stdc++.h> using namespace std; #define MAX 1000 vector<int> nextGreaterInLeft(int a[], int n){ vector<int> left_index(MAX, 0); stack<int> s; for(int i = n - 1; i >= 0; i--){ while(!s.empty() && a[i] > a[s.top() - 1]){ int r = s.top(); s.pop(); left_index[r - 1] = i + 1; } s.push(i + 1); } return left_index; } vector<int> nextGreaterInRight(int a[], int n){ vector<int> right_index(MAX, 0); stack<int> s; for(int i = 0; i < n; ++i){ while(!s.empty() && a[i] > a[s.top() - 1]){ int r = s.top(); s.pop(); right_index[r - 1] = i + 1; } s.push(i + 1); } return right_index; } int Product(int a[], int n){ vector<int> left = nextGreaterInLeft(a, n); vector<int> right = nextGreaterInRight(a, n); int ans = -1; for(int i = 1; i <= n; i++){ ans = max(ans, left[i] * right[i]); } return ans; } int main(){ int a[] = {5, 4, 3, 4, 5}; int n = sizeof(a)/sizeof(a[1]); cout<<Product(a, n); return 0; }
8
Java Program to find the maximum product of indexes of next greater on left and right
import java.io.*; import java.util.*; class LRProduct{ static int MAX = 1000; static int[] nextGreaterInLeft(int []a, int n){ int []left_index = new int[MAX]; Stack<Integer> s = new Stack<Integer>(); for(int i = n-1; i >= 0; i--){ while (s.size() != 0 && a[i] > a[s.peek() - 1]){ int r = s.peek(); s.pop(); left_index[r - 1] = i + 1; } s.push(i + 1); } return left_index; } static int[] nextGreaterInRight(int []a, int n){ int []right_index = new int[MAX]; Stack<Integer> s = new Stack<Integer>(); for(int i = 0; i < n; ++i){ while (s.size() != 0 && a[i] > a[s.peek() - 1]){ int r = s.peek(); s.pop(); right_index[r - 1] = i + 1; } s.push(i + 1); } return right_index; } static int Product(int []a, int n){ int []left = nextGreaterInLeft(a, n); int []right = nextGreaterInRight(a, n); int ans = -1; for(int i = 1; i <= n; i++){ ans = Math.max(ans, left[i] * right[i]); } return ans; } public static void main(String args[]){ int []a = new int[]{5, 4, 3, 4, 5}; int n = a.length; System.out.print(Product(a, n)); } }
8
Complexity Analysis for finding the maximum product of indexes of next greater on left and right
Time Complexity: O(n*n) where n is the number of elements in the array a[ ].
Auxiliary Space: O(n) because we used n extra space.