Table of Contents
Problem Statement
The Palindromic Substrings LeetCode Solution – “Palindromic Substrings” asks you to find a total number of palindromic substrings in the input string.
A string is a palindrome when it reads the same backward as forward.
A substring is a contiguous sequence of characters within the string.
Example:
Input: s = "aaa"
Output: 6
Explanation:
- All substrings are: [a,a,a,aa,aa,aaa].
- All the above substrings are palindrome, hence the answer is 6.
Input: s = "abc"
Output: 3
Explanation:
- All substrings are: [a,b,c,ab,bc,abc].
- Palindromic substrings are: [a,b,c]. Hence the answer is 3.
Approach
Idea:
- The main idea to solve this problem is to use dynamic programming.
- Maintain a boolean 2D vector that stores whether the substring [i:j] is a palindrome or not.
- We’ll iterate for smaller-length substrings then move on to higher-length substrings.
- dynamic programming relation is given by: dp[i][j]=true if s[i]==s[j] and dp[i+1][j-1]==true.
- After filling the boolean matrix, we’ll iterate for all the substrings and increment our answer by 1 if the substring is a palindrome.
Code for Palindromic Substrings Leetcode Solution:
C++ Solution:
class Solution { public: int countSubstrings(string s) { int n = s.length(); vector<vector<bool>> dp(n,vector<bool>(n)); for(int i=0;i<n;i++){ dp[i][i] = true; } for(int L=2;L<=n;L++){ for(int i=0;i+L<=n;i++){ int j = i + L - 1; if(L==2){ dp[i][j] = s[i]==s[j]; } else if(s[i]==s[j] and dp[i+1][j-1]){ dp[i][j] = true; } } } int ans = 0; for(int i=0;i<n;i++){ for(int j=i;j<n;j++){ ans += dp[i][j]; } } return ans; } };
Java Solution:
class Solution { public int countSubstrings(String s) { int n = s.length(),res = 0; boolean[][] dp = new boolean[n][n]; for(int i=0;i<n;i++){ dp[i][i] = true; } for(int L=2;L<=n;L++){ for(int i=0;i+L<=n;i++){ int j = i + L - 1; if(L==2){ dp[i][j] = s.charAt(i)==s.charAt(j); } else if(s.charAt(i)==s.charAt(j) && dp[i+1][j-1]){ dp[i][j] = true; } } } int ans = 0; for(int i=0;i<n;i++){ for(int j=i;j<n;j++){ if(dp[i][j]){ ans++; } } } return ans; } }
Complexity Analysis for Palindromic Substrings Leetcode Solution
Time Complexity
The time complexity of the above code is O(N^2) since we traverse for every substring which takes O(N^2) time.
Space Complexity
The space complexity of the above code is O(N^2). A 2D vector of size N*N has been made to store answers for every substring.
Reference: https://en.wikipedia.org/wiki/Palindrome