In transform a BST to greater sum tree Given a Binary Search Tree write an algorithm to convert it to a greater sum tree, that is, transform each node to contain the sum of all the elements greater than it.
Table of Contents
Example
Input
Output
Pre-order : 69 81 87 34 54 0
Naive Approach
The idea is very simple, traverse all the nodes one by one, and for each node again traverse the whole tree and find the sum of nodes greater than it.
Store the sum in an array and after computing, the sum for all the nodes, replace the nodes with their corresponding sums. This approach is applicable for any general binary tree and not particularly for BST.
- Traverse the given BST in in-order form.
- For each node, again traverse the tree in in-order form and find the sum of all the nodes that are greater than the current node.
- Store the sum in an array or a list.
- After traversing all the nodes, again traverse the tree in in-order form and replace every node with its corresponding sum in the array or list.
Time Complexity = O(n2)
Space Complexity = O(h)
where n is the number of nodes in the tree and h is the height of the tree.
JAVA Code for Transform a BST to Greater sum Tree
import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; public class TransformABSTToGreaterSumTree { // class representing the node of a binary tree static class Node { int data; Node left, right; public Node(int data) { this.data = data; } } // function to print the pre-order traversal of a binary tree private static void preOrder(Node root) { if (root != null) { System.out.print(root.data + " "); preOrder(root.left); preOrder(root.right); } } private static int findSum(Node root, int value) { // if root is null, sum is 0 if (root == null) { return 0; } // initialize sum as 0 int sum = 0; // traverse the tree and find the sum of all the values greater than value Queue<Node> queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { Node curr = queue.poll(); if (curr.data > value) { sum += curr.data; } if (curr.left != null) queue.add(curr.left); if (curr.right != null) queue.add(curr.right); } // return sum return sum; } private static void formSumList(Node root, Node curr, ArrayList<Integer> sumList) { // traverse the tree in in-order form and for each node // calculate the sum of elements greater than it if (curr != null) { formSumList(root, curr.left, sumList); // Check for all the nodes to find the sum int sum = findSum(root, curr.data); sumList.add(sum); formSumList(root, curr.right, sumList); } } private static void convertToGreaterSumTree(Node root, ArrayList<Integer> sumList) { // traverse the tree in in-order form and for each node // replace its value with the corresponding sum if (root != null) { convertToGreaterSumTree(root.left, sumList); // change this value root.data = sumList.get(0); sumList.remove(0); convertToGreaterSumTree(root.right, sumList); } } public static void main(String[] args) { // Example Tree Node root = new Node(12); root.left = new Node(6); root.right = new Node(20); root.left.left = new Node(1); root.right.left = new Node(15); root.right.right = new Node(34); ArrayList<Integer> sumList = new ArrayList<>(); formSumList(root, root, sumList); convertToGreaterSumTree(root, sumList); preOrder(root); System.out.println(); } }
69 81 87 34 54 0
C++ Code for Transform a BST to Greater sum Tree
#include <iostream> #include<vector> #include<queue> using namespace std; // class representing node of a binary tree class Node { public: int data; Node *left; Node *right; Node(int d) { data = d; left = right = NULL; } }; // function to print the preorder traversal of a binary tree void preOrder(Node *root) { if (root != NULL) { cout<<root->data<<" "; preOrder(root->left); preOrder(root->right); } } int findSum(Node *root, int value) { // if root is null, sum is 0 if (root == NULL) { return 0; } // initialize sum as 0 int sum = 0; // traverse the tree and find the sum of all the values greater than value queue<Node*> q; q.push(root); while (!q.empty()) { Node *curr = q.front(); q.pop(); if (curr->data > value) { sum += curr->data; } if (curr->left != NULL) { q.push(curr->left); } if (curr->right != NULL) { q.push(curr->right); } } // return sum return sum; } void formSumList(Node *root, Node *curr, vector<int> &sumList) { // traverse the tree in in-order form and for each node // calculate the sum of elements greater than it if (curr != NULL) { formSumList(root, curr->left, sumList); // Check for all the nodes to find the sum int sum = findSum(root, curr->data); sumList.push_back(sum); formSumList(root, curr->right, sumList); } } void convertToGreaterSumTree(Node *root, vector<int> &sumList) { // traverse the tree in in-order form and for each node // replace its value with the corresponding sum if (root != NULL) { convertToGreaterSumTree(root->left, sumList); // change this value root->data = sumList[0]; sumList.erase(sumList.begin()); convertToGreaterSumTree(root->right, sumList); } } int main() { // Example Tree Node *root = new Node(12); root->left = new Node(6); root->right = new Node(20); root->left->left = new Node(1); root->right->left = new Node(15); root->right->right = new Node(34); vector<int> sumList; formSumList(root, root, sumList); convertToGreaterSumTree(root, sumList); preOrder(root); cout<<endl; return 0; }
69 81 87 34 54 0
Optimal Approach
The above approach can be optimized for a BST, as a BST store the data in a very specified way.
Traverse the BST in reverse in-order, that is, right->root->left form. In this way we will traverse the nodes in decreasing order and before visiting any node we will visit the nodes greater than it, hence we can find the sum of all nodes greater than a node in just one traversal.
- Initialize a variable sum as 0, it is passed by reference or defined globally.
- Traverse the BST in reverse in-order form, in this way we will get the data in decreasing order.
- For each node we traverse, make its value equals to sum, and increment sum by the original value of the node(before updating).
Time Complexity = O(n)
Space Complexity = O(h)
where n is the total number of nodes in the given BST and h is the height of BST.
JAVA Code for Transform a BST to Greater sum Tree
public class TransformABSTToGreaterSumTree { // class representing node of a binary tree static class Node { int data; Node left, right; public Node(int data) { this.data = data; } } // function to print the pre-order traversal of a binary tree private static void preOrder(Node root) { if (root != null) { System.out.print(root.data + " "); preOrder(root.left); preOrder(root.right); } } // sum defined globally and initialized as 0 private static int sum = 0; private static void convertToGreaterSumTree(Node root) { // traverse the tree in reverse in-order form if (root != null) { convertToGreaterSumTree(root.right); // update the sum and the node's value int prevValue = root.data; root.data = sum; sum += prevValue; convertToGreaterSumTree(root.left); } } public static void main(String[] args) { // Example Tree Node root = new Node(12); root.left = new Node(6); root.right = new Node(20); root.left.left = new Node(1); root.right.left = new Node(15); root.right.right = new Node(34); convertToGreaterSumTree(root); preOrder(root); System.out.println(); } }
69 81 87 34 54 0
C++ Code for Transform a BST to Greater sum Tree
#include <iostream> #include<vector> #include<queue> using namespace std; // sum defined globally and initialized as 0 int sum = 0; // class representing node of a binary tree class Node { public: int data; Node *left; Node *right; Node(int d) { data = d; left = right = NULL; } }; // function to print the preorder traversal of a binary tree void preOrder(Node *root) { if (root != NULL) { cout<<root->data<<" "; preOrder(root->left); preOrder(root->right); } } void convertToGreaterSumTree(Node *root) { // traverse the tree in reverse in-order form if (root != NULL) { convertToGreaterSumTree(root->right); // update the sum and the node's value int prevValue = root->data; root->data = sum; sum += prevValue; convertToGreaterSumTree(root->left); } } int main() { // Example Tree Node *root = new Node(12); root->left = new Node(6); root->right = new Node(20); root->left->left = new Node(1); root->right->left = new Node(15); root->right->right = new Node(34); convertToGreaterSumTree(root); preOrder(root); cout<<endl; return 0; }
69 81 87 34 54 0