Maximal Square

Difficulty Level Medium
Frequently asked in Adobe Amazon AppDynamics Apple Facebook Google IBM PayPal Twitter
Array Dynamic Programming MatrixViews 3830

In the maximal square problem we have given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s, and return its area.

Example

Input:

1 0 1 0 0

0 0 1 1 1

1 1 1 1 1

0 0 0 1 0

Output:

4

Brute Force Approach

The brute force way to solve this problem is to iterate over all the possible square sub-matrix and choose the maximum from them.

C++ program for Maximal square

#include <bits/stdc++.h>
using namespace std;
int maximalSquare(vector<vector<char>> &matrix)
{
    int answer = 0;
    int n = matrix.size();
    if (n == 0)
    {
        return 0;
    }
    int m = matrix[0].size();
    if (m == 0)
    {
        return 0;
    }
    for (int sidelength = 1; sidelength <= min(n, m); sidelength++) // sidelength denotes the side length of the sub-matrix
    {
        // i,j are the top left index of the current sub-matrix
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                if ((i + sidelength > n) or (j + sidelength > m)) //check if the current sub-matrix is not out of bounds
                {
                    continue;
                }
                bool zero = false;
                // check if this sub matrix contain any zero or not
                for (int x = i; x < i + sidelength; x++)
                {
                    for (int y = j; y < j + sidelength; y++)
                    {
                        if (matrix[x][y] == '0')
                        {
                            zero = true;
                        }
                    }
                }
                if (zero == false) // if this does not contain any zero than this is a valid sub matrix
                {
                    answer = max(answer, sidelength * sidelength);
                }
            }
        }
    }
    return answer;
}
int main()
{
    int n, m;
    cin >> n >> m;
    vector<vector<char>> matrix(n, vector<char>(m));
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> matrix[i][j];
        }
    }
    int answer = maximalSquare(matrix);
    cout << answer << endl;
    return 0;
}
4 4
1 0 1 0 
1 0 1 1 
1 1 1 1 
1 0 0 1 
4

JAVA program for Maximal square

import java.util.*;
public class Main
{
    public static int maximalSquare(char[][] matrix)
    {
        int answer = 0;
        int n = matrix.length;
        if (n == 0)
        {
            return 0;
        }
        int m = matrix[0].length;
        if (m == 0)
        {
            return 0;
        }
        for (int sidelength = 1; sidelength <= Math.min(n, m); sidelength++) // sidelength denotes the side length of the sub-matrix
        {
            // i,j are the top left index of the current sub-matrix
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < m; j++)
                {
                    if ((i + sidelength > n) || (j + sidelength > m)) //check if the current sub-matrix is not out of bounds
                    {
                        continue;
                    }
                    boolean zero = false;
                    // check if this sub matrix contain any zero or not
                    for (int x = i; x < i + sidelength; x++)
                    {
                        for (int y = j; y < j + sidelength; y++)
                        {
                            if (matrix[x][y] == '0')
                            {
                                zero = true;
                            }
                        }
                    }
                    if (zero == false) // if this does not contain any zero than this is a valid sub matrix
                    {
                        answer = Math.max(answer, sidelength * sidelength);
                    }
                }
            }
        }
        return answer;
    }
  public static void main(String[] args) {
      Scanner sc = new Scanner(System.in);
      int n = sc.nextInt();
      int m = sc.nextInt();;
        char[][] matrix = new char[n][m];
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                matrix[i][j] = sc.next().charAt(0);
            }
        }
        int answer = maximalSquare(matrix);
    System.out.println(answer);
  }
}



4 5
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
9

Complexity Analysis

Time complexity

As we iterate over all the squares and there will be approx N^2 squares so the total time complexity is O(N^4).

Space complexity

As we have not used any extra space so the space complexity is O(1).

Dynamic Programming Approach

Explanation

Let say we have a dp array of size (n+1,m+1) where dp[i][j] represents the largest side length of a square of all ones whose top left corner is I,j.

So, if matrix[i][j] is one than we can say dp[i][j]=1+min(dp[i-1],dp[i][j-1],dp[i-1][j-1]) because the largest square of ones with top left corner I,j is just intersection of the largest squares of ones with top left corner (i-1,j),(I,j-1),(i-1,j-1).

Algorithm

  1. Initialize a dp array of size (n+1,m+1) with zeroes.
  2. Initialize a integer ans with zero.
  3. Iterate over all cells of the matrix.
    1. If matrix[i][j] is one than update dp[i][j]=1+ min(dp[i-1],dp[i][j-1],dp[i-1][j-1]).
    2. Update ans=max(ans,dp[i][j]).
  4. Return ans.

For example:

Matrix[][]={{‘1’, ‘0’, ‘1’, ‘0’, ‘0’},

{‘1’, ‘0’, ‘1’, ‘1’, ‘1’},

{ ‘1’, ‘1’, ‘1’, ‘1’, ‘1’},

{‘1’, ‘0’, ‘0’, ‘1’, ‘0’}}

For this matrix, the dp[][] array which look like this:

Maximal Square

dp[i][j] denotes the side length of the maximum square of ones whose top left corner has the index (i, j).

C++ program for Maximal square

#include <bits/stdc++.h>
using namespace std;
int maximalSquare(vector<vector<char>> &matrix)
{
    int n = matrix.size();
    if (n == 0)
    {
        return 0;
    }
    int m = matrix[0].size();
    if (m == 0)
    {
        return 0;
    }
    int ans = 0;
    vector<vector<int>> dp(n, vector<int>(m, 0));
    for (int i = n - 1; i >= 0; i--)
    {
        if (matrix[i][m - 1] == '1')
        {
            dp[i][m - 1]++;
            ans = 1;
        }
    }
    for (int i = m - 1; i >= 0; i--)
    {
        if (matrix[n - 1][i] == '1')
        {
            dp[n - 1][i]++;
            ans = 1;
        }
    }
    for (int i = n - 2; i >= 0; i--)
    {
        for (int j = m - 2; j >= 0; j--)
        {
            if (matrix[i][j] == '1')
            {
                dp[i][j] = min(dp[i + 1][j + 1], min(dp[i + 1][j], dp[i][j + 1])) + 1;
                ans = max(ans, dp[i][j]);
            }
        }
    }
    return ans * ans;
}
int main()
{
    int n, m;
    cin >> n >> m;
    vector<vector<char>> matrix(n, vector<char>(m));
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> matrix[i][j];
        }
    }
    int answer = maximalSquare(matrix);
    cout << answer << endl;
    return 0;
}
4 2
1 0 
1 1 
1 1
1 0
4

JAVA program for Maximal square

import java.util.*;
public class Main
{
    public static int maximalSquare(char[][] matrix)
    {
        int n = matrix.length;
        if (n == 0)
        {
            return 0;
        }
        int m = matrix[0].length;
        if (m == 0)
        {
            return 0;
        }
        int ans = 0;
        int[][] dp = new int[n][m];
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                dp[i][j]=0;
            }
        }
        for (int i = n - 1; i >= 0; i--)
        {
            if (matrix[i][m - 1] == '1')
            {
                dp[i][m - 1]++;
                ans = 1;
            }
        }
        for (int i = m - 1; i >= 0; i--)
        {
            if (matrix[n - 1][i] == '1')
            {
                dp[n - 1][i]++;
                ans = 1;
            }
        }
        for (int i = n - 2; i >= 0; i--)
        {
            for (int j = m - 2; j >= 0; j--)
            {
                if (matrix[i][j] == '1')
                {
                    dp[i][j] = Math.min(dp[i + 1][j + 1], Math.min(dp[i + 1][j], dp[i][j + 1])) + 1;
                    ans = Math.max(ans, dp[i][j]);
                }
            }
        }
        return ans * ans;
    }

  public static void main(String[] args) {
      Scanner sc = new Scanner(System.in);
      int n = sc.nextInt();
      int m = sc.nextInt();;
        char[][] matrix = new char[n][m];
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                matrix[i][j] = sc.next().charAt(0);
            }
        }
        int answer = maximalSquare(matrix);
    System.out.println(answer);
  }
}
4 5
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
16

Complexity Analysis

Time complexity

As we iterate over the matrix only once so the time complexity is O(N^2).

Space complexity

We took a dp array of size (n+1,m+1) so the space complexity is O(N^N).

References

Translate »