Morris Traversal

Difficulty Level Medium
Frequently asked in Amazon Facebook Fourkites Google Microsoft
Tree Tree TraversalViews 3078

Morris traversal is a method to traverse the nodes in a binary tree without using stack and recursion. Thus reducing the space complexity to linear.

Inorder Traversal

Example

Morris Traversal

9 7 1 6 4 5 3
            1

          /    \

        2        3

      /   \

   4        5
4 2 5 1 3
            7

          /   \

       14       21
14 7 21

Algorithm

  1. Initialize a class Node which contains variables and pointers related to a node.
  2. Create a function MorrisTraversal which accepts the root node.
  3. If the root is null, return.
  4. Set reference curr as root. Traverse while curr is not null.
  5. If the left child of curr is null print value stored in curr and update curr as it’s a right child.
  6. Else update curr as a right node of the rightmost node of its left subtree and update curr as the left child of curr.

Code

C++ Program to traverse a binary tree using Morris Traversal

#include <bits/stdc++.h> 
using namespace std;
  
struct Node{ 
    int data; 
    struct Node* left; 
    struct Node* right; 
}; 
  
void MorrisTraversal(struct Node* root){ 
    struct Node *curr, *pre; 
  
    if(root == NULL) 
        return; 
  
    curr = root; 
    while(curr != NULL){ 
  
        if(curr->left == NULL){ 
            printf("%d ", curr->data); 
            curr = curr->right; 
        } 
        else{ 
            pre = curr->left; 
            while (pre->right != NULL && pre->right != curr) 
                pre = pre->right; 
  
            if(pre->right == NULL) { 
                pre->right = curr; 
                curr = curr->left; 
            } 
            else{ 
                pre->right = NULL; 
                cout<<curr->data<<" "; 
                curr = curr->right; 
            }
        } 
    } 
} 
  
struct Node* newNode(int data){ 
    struct Node* node = new Node; 
    node->data = data; 
    node->left = NULL; 
    node->right = NULL; 
  
    return (node); 
} 
  
int main(){ 
    struct Node *root = newNode(5);
    root->left = newNode(7);
    root->right = newNode(3);
    root->left->left = newNode(9);
    root->left->right = newNode(6);
    root->left->right->left = newNode(1);
    root->left->right->right = newNode(4);
  
    MorrisTraversal(root); 
  
    return 0; 
}
9 7 1 6 4 5 3

Java Program to traverse a binary tree using Morris Traversal

class Node { 
    int data; 
    Node left, right; 
  
    Node(int item) 
    { 
        data = item; 
        left = right = null; 
    } 
} 
  
class BTree{ 
    Node root; 
  
    void MorrisTraversal(Node root){ 
        Node curr, pre; 
  
        if(root == null) 
            return; 
  
        curr = root; 
        while(curr != null){ 
            if(curr.left == null){ 
                System.out.print(curr.data + " "); 
                curr = curr.right; 
            } 
            else{ 
                pre = curr.left; 
                while(pre.right != null && pre.right != curr) 
                    pre = pre.right; 
  
                if(pre.right == null){ 
                    pre.right = curr; 
                    curr = curr.left; 
                } 
  
                else{ 
                    pre.right = null; 
                    System.out.print(curr.data + " "); 
                    curr = curr.right; 
                } 
            } 
        } 
    } 
  
    public static void main(String args[]){ 
        BTree tree = new BTree(); 
        tree.root = new Node(5);
        tree.root.left = new Node(7);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(9);
        tree.root.left.right = new Node(6);
        tree.root.left.right.left = new Node(1);
        tree.root.left.right.right = new Node(4);
  
        tree.MorrisTraversal(tree.root); 
    } 
}
9 7 1 6 4 5 3

Complexity Analysis

Time Complexity

O(N), because we traverse all the nodes in the binary tree. Since there are N nodes the time complexity is linear.

Space Complexity

O(1), because we are not using recursion or a stack to solve the problem. We have used a constant number of variables that account for constant space complexity.

Preorder Traversal

Example

            1

          /    \

        2        3

      /   \

   4        5
1 2 4 5 3
            7

          /   \

       14       21
7 14 21

Algorithm

  1. Initialize a class Node which contains variables and pointers related to a node.
  2. Create a function MorrisTraversal which accept node.
  3. Traverse while the node is not null.
  4. If the left child of a node is null print value stored in node and update node as it’s a right child.
  5. Else store left child of a node in another Node type variable curr.
  6. Traverse while the right child of curr is not null or not equal to the node and update curr as it’s a right child.
  7. If the right child of curr is null or equal to the node, update the right child of curr as null and node as it’s a right child.
  8. Else print node data and update the right child of curr as node and node as it’s a left child.

Code

C++ Program to traverse a binary tree using Morris Traversal

#include <bits/stdc++.h> 
using namespace std;  
  
class node{  
    public: 
        int data;  
        node *left, *right;  
};  
  
node* newNode(int data){  
    node* temp = new node(); 
    temp->data = data;  
    temp->left = temp->right = NULL;  
    return temp;  
}  
  
void MorrisTraversal(node* root){  
    while(root){  
        if(root->left == NULL){  
            cout<<root->data<<" ";  
            root = root->right;  
        }  
        else{  
            node* curr = root->left;  
            while(curr->right && curr->right != root)  
                curr = curr->right;  
  
            if(curr->right == root){  
                curr->right = NULL;  
                root = root->right;  
            }  
  
            else{  
                cout<<root->data<<" ";  
                curr->right = root;  
                root = root->left;  
            }  
        }  
    }  
}  
  
int main(){  
    node *root = newNode(5);
    root->left = newNode(7);
    root->right = newNode(3);
    root->left->left = newNode(9);
    root->left->right = newNode(6);
    root->left->right->left = newNode(1);
    root->left->right->right = newNode(4);  
  
    MorrisTraversal(root);  
  
  
    return 0;  
}
5 7 9 6 1 4 3

Java Program to traverse a binary tree using Morris Traversal

class Node{ 
      
    int data; 
    Node left, right; 
      
    Node(int item){ 
        data = item; 
        left = right = null; 
    } 
}
  
class BTree{ 
      
    Node root; 
      
    void MorrisTraversal(){ 
        MorrisTraversal(root); 
    } 
  
    void MorrisTraversal(Node node) { 
        while(node != null){ 
            if(node.left == null) { 
                System.out.print(node.data + " "); 
                node = node.right; 
            } 
            else{ 
                Node curr = node.left; 
                while (curr.right != null && curr.right != node) { 
                    curr = curr.right; 
                } 
  
                if(curr.right == node){ 
                    curr.right = null; 
                    node = node.right; 
                } 
   
                else{ 
                    System.out.print(node.data + " "); 
                    curr.right = node; 
                    node = node.left; 
                } 
            } 
        } 
    } 
      
    public static void main(String args[]){ 
        BTree tree = new BTree(); 
        tree.root = new Node(5);
        tree.root.left = new Node(7);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(9);
        tree.root.left.right = new Node(6);
        tree.root.left.right.left = new Node(1);
        tree.root.left.right.right = new Node(4);
        
        tree.MorrisTraversal(); 
    } 
}
5 7 9 6 1 4 3

Complexity Analysis

Time Complexity

O(N), because we traverse all the nodes in the binary tree. Since there are N nodes the time complexity is linear.

Space Complexity

O(1), because we are not using recursion or a stack to solve the problem. We have used a constant number of variables that account for constant space complexity.

Translate »