Find K Closest Elements LeetCode Solution

Difficulty Level Medium
Frequently asked in Amazon Apple Bloomberg ByteDance Facebook Goldman Sachs Google LinkedIn Microsoft Oracle PayPal Salesforce Uber
tiktokViews 2494

Problem Statement

Find K Closest Elements LeetCode Solution – Given a sorted integer array arr, two integers k and x, return the k closest integers to x in the array. The result should also be sorted in ascending order.

An integer a is closer to x than an integer b if:

  • |a - x| < |b - x|, or
  • |a - x| == |b - x| and a < b

 

Example 1:

Input:

Find K Closest Elements LeetCode Solution
Find K Closest Elements LeetCode Solution
 arr = [1,2,3,4,5], k = 4, x = 3

Output:

 [1,2,3,4]

Example 2:

Input:

 arr = [1,2,3,4,5], k = 4, x = -1

Output:

 [1,2,3,4]

 

Constraints:

  • 1 <= k <= arr.length
  • 1 <= arr.length <= 104
  • arr is sorted in ascending order.
  • -104 <= arr[i], x <= 104

Approach

Idea:

  1. in this problem, we have to find the k nearest elements to an element x.
  2. first, we sort the array.
  3. then we find the lower bound of ele x in the array.
  4. lower bound returns an iterator pointing to the first element in the range [first, last) which has a value not less than val.
  5. we can say that arr[idx]>=x and also arr[idx-1]<x where idx is index of lower bound.
  6. now we apply 2 pointer approach to fit k elements inside our window
  7. we take two pointers where i=idx-1 and j=idx (here idx is an index of lower bound)
  8. now if i is close to x then we take ith ele and do i–
  9. otherwise, we take jth element and do j++

Code:

Find K Closest Elements C++ Solution:

vector<int> findClosestElements(vector<int>& arr, int k, int x) {
       
       sort(arr.begin(),arr.end());
       
       vector<int> ans;
       
       auto lowerBound=lower_bound(arr.begin(),arr.end(),x);
       
       
       int idx=lowerBound-arr.begin();  
       int i=idx-1,j=idx;
       
      while(i>=0 && j<arr.size())
      {
          int diff1=x-arr[i],diff2=arr[j]-x;
          
          if(diff1<=diff2)
          {
              ans.push_back(arr[i]);
              i--;
          }
          else
          {
              ans.push_back(arr[j]);
              j++;
          }
          
          if(ans.size()==k){
              
              break;}
          
      }
       
      if(i>=0)
      {
          while(ans.size()!=k)
          {
              ans.push_back(arr[i]);
              i--;
          }
      }
       
       if(j<arr.size())
       {
            while(ans.size()!=k)
          {
              ans.push_back(arr[j]);
              j++;
          }
       }
       
       sort(ans.begin(),ans.end());
       
       return ans;
       
       
       
       
   }

Find K Closest Elements Java Solution:

class Solution {
    public List<Integer> findClosestElements(int[] arr, int k, int x) {
        int n = arr.length;
       
        int l = 0, r = n - 1, lowerBoundIdx = n;
        while(l <= r) {
            int m = l + (r - l) / 2;
            if(arr[m] <x) {
              
                l = m + 1;
            }
            else {
                lowerBoundIdx = m;
                r = m - 1;
            }
        }
        
        int i=lowerBoundIdx-1,j=lowerBoundIdx;
        List<Integer> ans = new ArrayList<>();
         while(i>=0 && j<n)
       {
           int diff1=x-arr[i],diff2=arr[j]-x;
           
           if(diff1<=diff2)
           {
               ans.add(arr[i]);
               i--;
           }
           else
           {
               ans.add(arr[j]);
               j++;
           }
           
           if(ans.size()==k){
               
               break;}
           
       }
        
       if(i>=0)
       {
           while(ans.size()!=k)
           {
               ans.add(arr[i]);
               i--;
           }
       }
        
        if(j<n)
        {
             while(ans.size()!=k)
           {
               ans.add(arr[j]);
               j++;
           }
        }
        Collections.sort(ans);
        return ans;
    }
}

Complexity Analysis:

Time Complexity:

The Time Complexity of the above solution is O(logn).

Space Complexity:

The Space Complexity of the above solution is O(1) since we are using constant extra space.

Translate »