Table of Contents
Problem Statement
N-Queens LeetCode Solution – The n-queens puzzle is the problem of placing n
queens on a n x n
chessboard such that no two queens attack each other.
Given an integer n
, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.
Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q'
and '.'
both indicate a queen and an empty space, respectively.
Example
Test Case 1:
Input:
n = 4
Output:
[[“.Q..”,”…Q”,”Q…”,”..Q.”],[“..Q.”,”Q…”,”…Q”,”.Q..”]]
Explanation:
There exist two distinct solutions to the 4-queens puzzle as shown above.
Approach:
1. Each row contains 1 queen
2. For each row, keep track of the valid columns for queen placement. # (NOTE in a clever way)
3. DFS, start from the first row, try each valid column and backtrack if necessary.
NOTE that we can encode left/right diagonals as indexes in the following way
For any (r, c),
its top-left to the bottom-right diagonal index is r – c, ∈ (-n, n)
its bottom-left to the top-right diagonal index is r + c, ∈ [0, 2n)
Each (r, c) takes the r-th row, c-th column, and the two diagonal indexes encoded above.
Thus we can use 4 sets to indicate whether those row/col/diagonal have been taken, if yes, a queen cannot be placed at (r, c).
Moreover, if we search via dfs, proceeding row by row, we can avoid keeping # the row set, getting away with 3 sets only (column, and 2 diagonals).
Each set indicates whether the column/diagonal with the specified index has been taken.
Code for N-Queens
Java Program
class Solution { private Set<Integer> col = new HashSet<Integer>(); private Set<Integer> diag1 = new HashSet<Integer>(); private Set<Integer> diag2 = new HashSet<Integer>(); public List<List<String>> solveNQueens(int n) { List<List<String>> res = new ArrayList<List<String>>(); dfs(res,new ArrayList<String>(), 0, n); return res; } private void dfs(List<List<String>> res, List<String> list, int row, int n){ if (row == n){ res.add(new ArrayList<String>(list)); return; } for (int i = 0; i < n; i++){ if (col.contains(i) || diag1.contains(row + i) || diag2.contains(row - i)) continue; char[] charArray = new char[n]; Arrays.fill(charArray, '.'); charArray[i] = 'Q'; String rowString = new String(charArray); list.add(rowString); col.add(i); diag1.add(row + i); diag2.add(row - i); dfs(res, list, row + 1, n); list.remove(list.size() - 1); col.remove(i); diag1.remove(row + i); diag2.remove(row - i); } } }
C++ Program
class Solution { public: std::vector<std::vector<std::string> > solveNQueens(int n) { std::vector<std::vector<std::string> > res; std::vector<std::string> nQueens(n, std::string(n, '.')); solveNQueens(res, nQueens, 0, n); return res; } private: void solveNQueens(std::vector<std::vector<std::string> > &res, std::vector<std::string> &nQueens, int row, int &n) { if (row == n) { res.push_back(nQueens); return; } for (int col = 0; col != n; ++col) if (isValid(nQueens, row, col, n)) { nQueens[row][col] = 'Q'; solveNQueens(res, nQueens, row + 1, n); nQueens[row][col] = '.'; } } bool isValid(std::vector<std::string> &nQueens, int row, int col, int &n) { //check if the column had a queen before. for (int i = 0; i != row; ++i) if (nQueens[i][col] == 'Q') return false; //check if the 45° diagonal had a queen before. for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j) if (nQueens[i][j] == 'Q') return false; //check if the 135° diagonal had a queen before. for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j) if (nQueens[i][j] == 'Q') return false; return true; } };
Complexity Analysis for N-Queens LeetCode Solution
Time Complexity: O(N**N).
Space Complexity: O(N**2)