N-Queens LeetCode Solution

Difficulty Level Hard
Frequently asked in Adobe Amazon Apple Bloomberg ByteDance eBay Facebook Goldman Sachs Google Microsoft Nutanix UberViews 4001

Problem Statement

N-Queens LeetCode Solution – The n-queens puzzle is the problem of placing n queens on a n x n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.

Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.


Test Case 1:


n = 4



N-Queens LeetCode Solution


There exist two distinct solutions to the 4-queens puzzle as shown above.


1. Each row contains 1 queen

2. For each row, keep track of the valid columns for queen placement. # (NOTE in a clever way)

3. DFS, start from the first row, try each valid column and backtrack if necessary.

NOTE that we can encode left/right diagonals as indexes in the following way

For any (r, c),

its top-left to the bottom-right diagonal index is r – c, ∈ (-n, n)

its bottom-left to the top-right diagonal index is r + c, ∈ [0, 2n)

Each (r, c) takes the r-th row, c-th column, and the two diagonal indexes encoded above.

Thus we can use 4 sets to indicate whether those row/col/diagonal have been taken, if yes, a queen cannot be placed at (r, c).

Moreover, if we search via dfs, proceeding row by row, we can avoid keeping # the row set, getting away with 3 sets only (column, and 2 diagonals).

Each set indicates whether the column/diagonal with the specified index has been taken.

Code for N-Queens

Java Program

class Solution {
    private Set<Integer> col = new HashSet<Integer>();
    private Set<Integer> diag1 = new HashSet<Integer>();
    private Set<Integer> diag2 = new HashSet<Integer>();
    public List<List<String>> solveNQueens(int n) {
        List<List<String>> res = new ArrayList<List<String>>();
        dfs(res,new ArrayList<String>(), 0, n);
        return res;
    private void dfs(List<List<String>> res, List<String> list, int row, int n){
        if (row == n){
            res.add(new ArrayList<String>(list));
        for (int i = 0; i < n; i++){
            if (col.contains(i) || diag1.contains(row + i) || diag2.contains(row - i)) continue;
            char[] charArray = new char[n];
            Arrays.fill(charArray, '.');
            charArray[i] = 'Q';
            String rowString = new String(charArray);
            diag1.add(row + i);
            diag2.add(row - i);
            dfs(res, list, row + 1, n);
            list.remove(list.size() - 1);
            diag1.remove(row + i);
            diag2.remove(row - i);

C++ Program

class Solution {
    std::vector<std::vector<std::string> > solveNQueens(int n) {
        std::vector<std::vector<std::string> > res;
        std::vector<std::string> nQueens(n, std::string(n, '.'));
        solveNQueens(res, nQueens, 0, n);
        return res;
    void solveNQueens(std::vector<std::vector<std::string> > &res, std::vector<std::string> &nQueens, int row, int &n) {
        if (row == n) {
        for (int col = 0; col != n; ++col)
            if (isValid(nQueens, row, col, n)) {
                nQueens[row][col] = 'Q';
                solveNQueens(res, nQueens, row + 1, n);
                nQueens[row][col] = '.';
    bool isValid(std::vector<std::string> &nQueens, int row, int col, int &n) {
        //check if the column had a queen before.
        for (int i = 0; i != row; ++i)
            if (nQueens[i][col] == 'Q')
                return false;
        //check if the 45° diagonal had a queen before.
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j)
            if (nQueens[i][j] == 'Q')
                return false;
        //check if the 135° diagonal had a queen before.
        for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j)
            if (nQueens[i][j] == 'Q')
                return false;
        return true;

Complexity Analysis for N-Queens LeetCode Solution

Time Complexity: O(N**N).

Space Complexity: O(N**2)

Translate »