House Robber

Difficulty Level Medium
Frequently asked in Amazon Apple Cisco Expedia Google Microsoft Oracle
Depth First SearchViews 4289

The House Robber Problem states that, in a neighborhood in a city, there is a single row of n houses. A thief is planning to carry a heist in this neighborhood. He knows how much gold is concealed in each of the houses.

However, in order to avoid triggering an alarm and raise suspicion, he plans to carry heist in such a way that no two consecutive houses are looted. i.e. if the house at index = i is looted, the houses at i-1 and i+1 are not looted.

Find out what is the maximum number of gold the thief can steal following the given constraints.

Example

Input 1: arr[] = [2,3,4,2,3]
         Maximum gold = [2, X, 4, X, 3] = 9
Output: 6


Input 2: arr[] = [3,8,10,4,2,3]
         Maximum gold = [3, X, 10, X, X, 3] = 16
Output: 15


Input 2: arr[] = [3,8,10,4,2,3,11] 
         Maximum gold = [3, X, 10, X, 2, X, 11] = 26 
Output: 26

Explanation: in example 2, the thief has to get to 1st, 3rd, and 6th house to collect the maximum number of gold given the constraints.

Types of Solution

  1. Recursive
  2. Dynamic Programming :
    • Memoized Solution
    • Tabulated Solution
    • Space Optimized DP solution

Recursive solution for House Robber

Given an array, the solution is to find the maximum sum subsequence where no two selected elements are adjacent. we implement this in the following way:

  1. Start traversing arr[] from right to left.
  2. If an element arr[i] is selected then the next element (arr[i-1]) cannot be selected.
  3. If an element(arr[i]) is not selected then the next element arr[i-1] can be selected.
  4. Perform steps 2 and 3 recursively and return the maximum of values obtained in steps 2 and 3.

C++ Program

#include <iostream>
using namespace std;

int maxGold (int gold[],int n)
{
    if(n <= 0)
    return 0;
    
    // select the current element
    int select = gold[n-1] + maxGold(gold,n-2);
    // not selecting the current element
    int notselect = maxGold(gold,n-1);
    
    // return maximum of both of above
    return max(select,notselect);
}

int main() 
{
  int gold[] = {3,8,10,4,2,3};
  int n = sizeof(gold)/sizeof(int);
  
  cout<<"Maximum gold looted = "<<maxGold(gold,n);
  return 0;
}
Maximum gold looted = 16

Java Program

import java.io.*;

class tutorialcup
{
    static int maxGold (int gold[],int n)
    {
        if(n <= 0)
        return 0;
        
        // select the current element
        int select = gold[n-1] + maxGold(gold,n-2);
        // not selecting the current element
        int notselect = maxGold(gold,n-1);
        
        // return maximum of both of above
        return Math.max(select,notselect);
    }
    
  public static void main (String[] args) 
  {
    int gold[] = {3,8,10,4,2,3};
    	        int n = gold.length;
    	
    	        System.out.print("Maximum gold looted = "+maxGold(gold,n));
  }
}
Maximum gold looted = 16

Complexity Analysis

  1. Time complexity T(n) = O(2n), recursive calls.
  2. Space complexity A(n) = O(1)

Dynamic Programming

The major drawback of the recursive solution is its exponential time complexity. This Happens as the recursive solution tries to solve certain subproblems repeatedly. This increases the time taken by the algorithm. The exponential time complexity of the recursive solution can be reduced to linear time complexity using dynamic programming. This method utilizes extra space to store solutions of the subproblems, later in the program if that subproblem is called again, it’s stored value can be directly used instead of recalculating it. This reduces the complexity from exponential to linear order.

We will implement Dynamic Programming Solution in the following ways :

Memoized Solution for House Robber

here we create a map memo and store subproblems as it’s keys and solutions to the subproblems as values of the map. The implementation code is similar to the recursive approach, except for slight changes and usage of Map.

The memo map is given below:

House Robber

C++ Program

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

int maxGold (int gold[],int n, unordered_map <int,int> &memo)
{
    int key = n;
    
    // if solution for subproblem maxGold(gold,n,memo)
    // has not been calculated
    // calulate it
    if(memo.find(key) == memo.end())
    {
        if(n <= 0)
        {
            memo[key] = 0;
            return memo[key];
        }
        
        // select the current element
        int select = gold[n-1] + maxGold(gold,n-2,memo);
        // not selecting the current element
        int notselect = maxGold(gold,n-1,memo);
        
        // return maximum of both of above
        memo[key] = max(select,notselect);
    }
    
    // return value of subproblem after being calculated
    // or if already present
    return memo[key];
}

// main function to implement above function
int main() 
{
  int gold[] = {3,8,10,4,2,3};
  int n = sizeof(gold)/sizeof(int);
  
  // map to store mapping between particular subproblem and it's value
  unordered_map <int,int> memo;
  cout<<"Maximum gold looted = "<<maxGold(gold,n,memo);
  return 0;
}
Maximum gold looted = 16

Java Program

import java.io.*;
import java.util.*;
class tutorialcup
{
    static int maxGold (int gold[],int n, HashMap <Integer,Integer> memo)
    {
        int key = n;
        
        // if solution for subproblem maxGold(gold,n,memo)
        // has not been calculated
        // calulate it
        if(!memo.containsKey(key))
        {
            if(n <= 0)
            {
                memo.put(key,0);
                return memo.get(key);
            }
            
            // select the current element
            int select = gold[n-1] + maxGold(gold,n-2,memo);
            // not selecting the current element
            int notselect = maxGold(gold,n-1,memo);
            
            // return maximum of both of above
            memo.put(key, Math.max(select,notselect));
        }
        
        // return value of subproblem after being calculated
        // or if already present
        return memo.get(key);
    }

    
  public static void main (String[] args) 
  {
    int gold[] = {3,8,10,4,2,3};
    	int n = gold.length;
    	
    	HashMap <Integer,Integer> memo = new HashMap <Integer,Integer>();
    	System.out.print("Maximum gold looted = "+maxGold(gold,n,memo));
  }
}
Maximum gold looted = 16

Complexity Analysis

  1. Time Complexity : T(n) = O(n), single array traversal.
  2. Space Complexity : A(n) = O(n), extra space for map.

Tabulated Solution for House Robber

we create a table (linear array) where the subproblems are the array index and solutions to the subproblems are the value at that particular index.

Algorithm

    1. Create an array table[] to store the sub-problems
    2. Define some base cases (for n = 0,1,2).
    3. return 0 for n = 0.
    4. Update table[0] = gold[0] and table[1] = max(gold[0], gold[1]).
    5. Traverse the array from i = 2 to the end of the array.
    6. For every index, update table[i] = max(table[i-2] + gold[i] , table[i-1]), this step defines the two cases, if an element is selected then the previous element cannot be selected and if an element is not selected then the previous element can be selected.
    7. return the value table[n-1].

We display the above process below:

House Robber

C++ Program

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

int maxGold (int gold[],int n1)
{
    // base cases
    if (n1 == 0) 
        return 0; 
    if (n1 == 1) 
        return gold[0]; 
    if (n1 == 2) 
        return max(gold[0], gold[1]); 
  
    // table[i] represent the maximum value stolen 
    // so far after reaching house i. 
    int table[n1]; 
  
    // Initialize the table[0] and table[1] 
    table[0] = gold[0]; 
    table[1] = max(gold[0], gold[1]); 
  
    // Fill remaining positions 
    for (int i = 2; i<n1; i++) 
        table[i] = max(gold[i]+table[i-2], table[i-1]); 
  
    return table[n1-1]; 
}

// main function to implement above function
int main() 
{
  int gold[] = {3,8,10,4,2,3};
  int n = sizeof(gold)/sizeof(int);
  
  cout<<"Maximum gold looted = "<<maxGold(gold,n);
  return 0;
}
Maximum gold looted = 16

Java Program

import java.io.*;
import java.util.*;
class tutorialcup
{
    static int maxGold (int gold[],int n)
    {
        // base cases
        if (n == 0) 
            return 0; 
        if (n == 1) 
            return gold[0]; 
        if (n == 2) 
            return Math.max(gold[0], gold[1]); 
      
        // table[i] represent the maximum value stolen 
        // so far after reaching house i. 
        int table[] = new int[n]; 
      
        // Initialize the table[0] and table[1] 
        table[0] = gold[0]; 
        table[1] = Math.max(gold[0], gold[1]); 
      
        // Fill remaining positions 
        for (int i = 2; i<n; i++) 
            table[i] = Math.max(gold[i]+table[i-2], table[i-1]); 
      
        return table[n-1]; 
    }
    
  public static void main (String[] args) 
  {
    int gold[] = {3,8,10,4,2,3};
    	int n = gold.length;
    	
    	System.out.print("Maximum gold looted = "+maxGold(gold,n));
  }
}
Maximum gold looted = 16

Complexity Analysis

  1. Time Complexity : T(n) = O(n), single traversal.
  2. Space Complexity : A(n) = O(n), for table[].

Space Optimized DP solution for House Robber

By carefully observing the tabulated DP solution, we deduce that only the last two indices (i-1 and i-2) are required to calculate the solution of the i-th subproblem. i.e. we need only table[i-2] and table[i-1] to calculate the value of table[i]. So, we eliminate the table[] array and replace it with two auxiliary variables.

Algorithm

  1. Define some base cases (for n = 0,1,2).
  2. return 0 for n = 0.
  3. Create two variables val1 and val2.
  4. assign val1 = gold[0] , value2 = max(gold[0], gold[1]).
  5. define a variable maxLoot to store the answer.
  6. Traverse the array from the second element to the end of the array.
  7. For every index = i, update maxLoot  = max(val1 + gold[i],val2), this step defines the two cases, if an element is selected then the previous element cannot be selected and if an element is not selected then the previous element can be selected.
  8. Also, For every index, Update val1= val2 and val2 = maxLoot.
  9. return the final value of maxLoot, after the array traversal.

C++ Program

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

int maxGold (int gold[],int n)
{
    // base cases
    if (n == 0) 
        return 0; 
    if (n == 1) 
        return gold[0]; 
    if (n == 2) 
        return max(gold[0], gold[1]); 
  
    // define and initialize val1 and val2
    int val1 = gold[0]; 
    int val2 = max(gold[0], gold[1]); 
    // define maxLoot to obtain maximum value of gold stolen
    int maxLoot;
    
    // traverse to find the final value of maxLoot
    for (int i = 2; i<n; i++) 
    {
        maxLoot = max(gold[i]+val1, val2); 
        val1 = val2;
        val2 = maxLoot;
    }
  
    return maxLoot; 
}

// main function to implement above function
int main() 
{
  int gold[] = {3,8,10,4,2,3};
  int n = sizeof(gold)/sizeof(int);
  
  cout<<"Maximum gold looted = "<<maxGold(gold,n);
  return 0;
}
Maximum gold looted = 16

Java Program

import java.io.*;
import java.util.*;
class tutorialcup
{
    static int maxGold (int gold[],int n)
    {
        // base cases
        if (n == 0) 
            return 0; 
        if (n == 1) 
            return gold[0]; 
        if (n == 2) 
            return Math.max(gold[0], gold[1]);
      
        // define and initialize val1 and val2
        int val1 = gold[0]; 
        int val2 = Math.max(gold[0], gold[1]); 
        int maxLoot = 0;
        
        // traverse to find the final value of maxLoot
        for (int i = 2; i<n; i++) 
        {
            maxLoot = Math.max(gold[i]+val1, val2);
            val1 = val2;
            val2 = maxLoot;
        }
      
        return maxLoot; 
    }
    
  public static void main (String[] args) 
  {
    int gold[] = {3,8,10,4,2,3};
    	int n = gold.length;
    	
    	System.out.print("Maximum gold looted = "+maxGold(gold,n));
  }
}
Maximum gold looted = 16

Complexity Analysis

  1. Time Complexity : T(n) = O(n), single traversal.
  2. Space Complexity : A(n) = O(1), used only two extra variables .

References

Translate »