Kruskal Algorithm

Difficulty Level Hard
Frequently asked in Amazon
Depth First Search Union FindViews 3740

What is Kruskal Algorithm?

Kruskal’s algorithm is used to find the minimum spanning tree(MST) of a connected and undirected graph.

Example

Graph

Kruskal Algorithm

Minimum Spanning Tree(MST)

Kruskal Algorithm

Algorithm

Kruskal’s algorithm is a greedy algorithm to find the minimum spanning tree.

  1. Sort the edges in ascending order according to their weights.
  2. At every step, choose the smallest edge(with minimum weight). If this edge forms a cycle with the MST formed so far, discard the edge, else, add it to the MST.
  3. Repeat step 2, until all the vertices are not present in MST.

Explanation

Consider the graph shown in above example,

The edges in the above graph are,
Edges = {{0 to 1, wt = 5}, {0 to 2, wt = 8}, {1 to 2, wt = 10}, {1 to 3, wt = 15}, {2 to 3, wt = 20}}

After sorting, edges are,
Edges = {{0 to 1 wt = 5}, {0 to 2, wt = 8}, {1 to 2, wt = 10}, {1 to 3, wt = 15}, {2 to 3, wt = 20}}

  • {0 to 1, wt = 5}, include in MST
  • {0 to 2, wt = 8}, include in MST
    Kruskal Algorithm
  • {1 to 2, wt = 10}, forms a cycle, do not include in MST
  • {1 to 3, wt = 15}, include in MST
    Kruskal Algorithm

All the vertices are included in MST, so we stop here.

JAVA Program For Kruskal Algorithm

public class KruskalAlgorithm {
    // Function to find the set of element i
    private static int find(Subset subsets[], int i) {
        // Path Compression
        if (subsets[i].parent != i)
            subsets[i].parent = find(subsets, subsets[i].parent);

        return subsets[i].parent;
    }

    // Function to perform union of two sets of x and y
    private static void Union(Subset subsets[], int x, int y) {
        int xRoot = find(subsets, x);
        int yRoot = find(subsets, y);

        // (Union by Rank)
        if (subsets[xRoot].rank < subsets[yRoot].rank) {
            subsets[xRoot].parent = yRoot;
        } else if (subsets[xRoot].rank > subsets[yRoot].rank) {
            subsets[yRoot].parent = xRoot;
        } else {
            // If rank are same, then make one as root and increment
            // its rank by one
            subsets[yRoot].parent = xRoot;
            subsets[xRoot].rank++;
        }
    }

    private static void findPrintMST(ArrayList<Edge> graph[], Edge edges[]) {
        // Sort the edges in ascending order of their weights
        Arrays.sort(edges, Edge.comp);

        // Stores the mst
        Edge mst[] = new Edge[graph.length - 1];
        for (int i = 0; i < graph.length - 1; i++) {
            mst[i] = new Edge(-1, -1, -1);
        }
        int e = 0;      // Number of edges included in mst
        
        // Create v subsets, v is the number of vertices
        Subset subsets[] = new Subset[graph.length];
        for (int i = 0; i < graph.length; i++) {
            subsets[i] = new Subset();
        }
        // Initialise parent of all as itself and rank as 0
        for (int i = 0; i < graph.length; i++) {
            subsets[i].parent = i;
            subsets[i].rank = 0;
        }

        // One by one traverse all the edges
        for (int i = 0; i < edges.length; i++) {
            // Find the set of vertices present on this edge
            int x = find(subsets, edges[i].from);
            int y = find(subsets, edges[i].to);

            // If the set is not same(that is, no cycle is formed)
            // Add this edge to mst
            if (x != y) {
                mst[e].from = edges[i].from;
                mst[e].to = edges[i].to;
                mst[e].weight = edges[i].weight;
                Union(subsets, x, y);
                e++;
            } else {
                // Discard the edge
            }

            // If all the vertices are included in MST, stop here
            if (e == graph.length - 1) {
                break;
            }
        }
        
        // Print the MST
        for (int i = 0; i < graph.length - 1; i++) {
            System.out.println("From " + mst[i].from + " to " + mst[i].to + " weight " + mst[i].weight);
        }
    }

    public static void main(String[] args) {
        // Graph
        ArrayList<Edge> graph[] = new ArrayList[4];
        // Stores all the edges of the graph
        Edge edges[] = new Edge[5];
        for (int i = 0; i < 4; i++)
            graph[i] = new ArrayList<>();

        // Make the graph in given example
        graph[0].add(new Edge(0, 1, 5));
        graph[0].add(new Edge(0, 2, 8));
        graph[1].add(new Edge(1, 0, 5));
        graph[1].add(new Edge(1, 2, 10));
        graph[1].add(new Edge(1, 3, 15));
        graph[2].add(new Edge(2, 0, 8));
        graph[2].add(new Edge(2, 1, 10));
        graph[2].add(new Edge(2, 3, 20));
        graph[3].add(new Edge(3, 1, 15));
        graph[3].add(new Edge(3, 2, 20));

        // Store all the edges of the graph
        edges[0] = new Edge(0, 1, 5);
        edges[1] = new Edge(0, 2, 8);
        edges[2] = new Edge(1, 2, 10);
        edges[3] = new Edge(1, 3, 15);
        edges[4] = new Edge(2, 3, 20);

        // Find MST using Kruskal's Algorithm and print it
        findPrintMST(graph, edges);
    }

    static class Edge {
        int from;
        int to;
        int weight;

        public Edge(int from, int to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }

        public static final Comparator<Edge> comp = new Comparator<Edge>() {
            @Override
            public int compare(Edge o1, Edge o2) {
                // Sort according to edge weights
                return Integer.compare(o1.weight, o2.weight);
            }
        };
    }

    // Subset class is used to detect cycle while adding an edge
    static class Subset {
        int parent;
        int rank;
    }
}

C++ Program For Kruskal Algorithm

#include <iostream>
#include<algorithm>
#include <vector>
using namespace std;

// class representing an Edge of a graph
class Edge {
    public:
    int from;
    int to;
    int weight;
    
    Edge(int f, int t, int w) {
        from = f;
        to = t;
        weight = w;
    }
};

// Subset class is used to detect cycle while adding an edge
class Subset {
    public:
    int parent;
    int rank;
};

// Function to find the set of element i
int find(Subset subsets[], int i) {  
    // Path compression
    if (subsets[i].parent != i)  
        subsets[i].parent = find(subsets, subsets[i].parent);  
  
    return subsets[i].parent;  
}

// Function to perform union of two sets of x and y
void Union(Subset subsets[], int x, int y) {  
    int xroot = find(subsets, x);  
    int yroot = find(subsets, y);  
  
    // Union by Rank
    if (subsets[xroot].rank < subsets[yroot].rank) {
        subsets[xroot].parent = yroot;  
    } else if (subsets[xroot].rank > subsets[yroot].rank) {
        subsets[yroot].parent = xroot;  
    } else {  
        // If ranks are same, then make one as root and  
        // increment its rank by one  
        subsets[yroot].parent = xroot;  
        subsets[xroot].rank++;  
    }  
}

void findPrintMST(vector<Edge> graph[], vector<Edge> &edges, int v) {
    // Sort the edges in ascending order of their weights
    sort(edges.begin(), edges.end(), 
        [](const Edge& lhs, const Edge& rhs) {
        return lhs.weight < rhs.weight;
        });
        
    // Stores the mst
    vector<Edge> mst;
    int e = 0;      // Number of edges included in mst
    
    // Create v subsets, v is the number of vertices
    Subset *subsets = new Subset[(v * sizeof(Subset))];
    // Initialise parent of all as itself and rank as 0
    for (int i = 0; i < v; i++) {
        subsets[i].parent = i;
        subsets[i].rank = 0;
    }
    
    // One by one traverse all the edges
    for (int i = 0; i < edges.size(); i++) {
        // Find the set of vertices present on this edge
        int x = find(subsets, edges[i].from);
        int y = find(subsets, edges[i].to);
        
        // If the set is not same(that is, no cycle is formed)
        // Add this edge to mst
        if (x != y) {
            Edge curr(edges[i].from, edges[i].to, edges[i].weight);
            mst.push_back(curr);
            Union(subsets, x, y);
            e++;
        } else {
            // Discard the edge
        }
        
        // If all the vertices are included in MST, stop here
        if (e == v - 1) {
            break;
        }
    }
    
    // Print the mst
    for (int i = 0; i < mst.size(); i++) {
        cout<<"From "<<mst[i].from<<" to "<<mst[i].to<<" weight "<<mst[i].weight<<endl;
    }
}

int main() {
    vector<Edge> graph[4];
    vector<Edge> edges;
    
    // Make the graph in given example
    Edge e1(0, 1, 5);
    Edge e2(0, 2, 8);
    Edge e3(1, 0, 5);
    Edge e4(1, 2, 10);
    Edge e5(1, 3, 15);
    Edge e6(2, 0, 8);
    Edge e7(2, 1, 10);
    Edge e8(2, 3, 20);
    Edge e9(3, 1, 15);
    Edge e10(3, 2, 20);
    
    graph[0].push_back(e1);
    graph[0].push_back(e2);
    graph[1].push_back(e3);
    graph[1].push_back(e4);
    graph[1].push_back(e5);
    graph[2].push_back(e6);
    graph[2].push_back(e7);
    graph[2].push_back(e8);
    graph[3].push_back(e9);
    graph[3].push_back(e10);
    
    // Edges in the graph
    edges.push_back(e1);
    edges.push_back(e2);
    edges.push_back(e4);
    edges.push_back(e5);
    edges.push_back(e8);
    
    // Find MST using Kruskal's Algorithm and print it
    findPrintMST(graph, edges, 4);
    
    return 0;
}

Output

From 0 to 1 weight 5
From 0 to 2 weight 8
From 1 to 3 weight 15

Time Complexity

O(E * log(E) + E * log (V)) where E denotes the Number of edges in the graph and V denotes the Number of vertices in the graph.

References

Translate ยป