In reversing the first K elements of a queue problem we have given a queue and a number k, reverse the first k elements of a queue using standard operations of the queue.
Table of Contents
Examples
Input:
queue = 10 -> 15 -> 31 -> 17 -> 12 -> 19 -> 2
k = 3
Output:
queue = 31 -> 15 -> 10 -> 17 -> 12 -> 19 -> 2
Input:
queue = 12 -> 14 -> 16 -> 7 -> 9
k = 2
Output:
queue = 14 -> 12 -> 16 -> 7 -> 9
Algorithm for Reversing the First K elements of a Queue
To reverse the first k elements of the queue we can use a stack.
- Remove first k elements of the queue and push them into a stack.
- Pop all the elements of the stack and push them to the end of the queue.
- Pop-out (n – k) elements from the front of the queue and push them to the end of the queue, where n is the total number of elements in the queue.
- First, k elements of the queue are reversed, print the elements of the queue.
Explanation for Reversing the First K elements of a Queue
Consider an example,
queue = 10 -> 7 -> 4 -> 3
k = 2
Step 1
Remove first k elements of the queue and push them into a stack.
queue = 10 -> 7 -> 4 -> 3 and stack = null
Iteration 1
queue = 7 -> 4 -> 3 and stack = 10
Iteration 2
queue = 4 -> 3 and stack= 7 -> 10
Step 2
Pop all the elements of the stack and push them to the end of the queue.
queue= 4 -> 3 and stack= 7 -> 10
Iteration 1
queue= 4 -> 3 -> 7 and stack = 10
Iteration 2
queue = 4 -> 3 -> 7 -> 10 and stack = null
Step 3
Pop out (n – k) elements from the front of the queue and push them to the end of the queue
queue = 4 -> 3 -> 7 -> 10
Iteration 1
queue = 3 -> 7 -> 10 -> 4
Iteration 2
queue = 7 -> 10 -> 4 -> 3
JAVA Code
import java.util.LinkedList; import java.util.Queue; import java.util.Stack; public class ReversingTheFirstKElementsOfAQueue { private static void reverseKElements(Queue<Integer> queue, int k) { if (k < 0 || k >= queue.size() || queue.isEmpty()) { System.out.println("Invalid Input"); return; } int n = queue.size(); // remove first k elements of queue and push in stack Stack<Integer> stack = new Stack<>(); for (int i = 0; i < k; i++) { int curr = queue.poll(); stack.push(curr); } // Pop out elements from stack and add to the end of the queue while (!stack.isEmpty()) { int curr = stack.pop(); queue.add(curr); } // Remove first (n - k) elements of the queue and add them to the end for (int i = 0; i < n - k; i++) { int curr = queue.poll(); queue.add(curr); } // Print the elements of the queue for (Integer i : queue) { System.out.print(i + " "); } System.out.println(); } public static void main(String[] args) { // Example 1 Queue<Integer> q1 = new LinkedList<>(); int k1 = 3; q1.add(10); q1.add(15); q1.add(31); q1.add(17); q1.add(12); q1.add(19); q1.add(2); reverseKElements(q1, k1); // Example 2 Queue<Integer> q2 = new LinkedList<>(); int k2 = 2; q2.add(12); q2.add(14); q2.add(16); q2.add(7); q2.add(9); reverseKElements(q2, k2); } }
31 15 10 17 12 19 2 14 12 16 7 9
C++ Code
#include<bits/stdc++.h> using namespace std; void reverseKElements(queue<int> &queue, int k) { if (k < 0 || k >= queue.size() || queue.empty()) { cout<<"Invalid Input"<<endl; return; } int n = queue.size(); // remove first k elements of queue and push in stack stack<int> st; for (int i = 0; i < k; i++) { int curr = queue.front(); queue.pop(); st.push(curr); } // Pop out elements from stack and add to the end of the queue for (int i = 0; i < k; i++) { int curr = st.top(); st.pop(); queue.push(curr); } // Remove first (n - k) elements of the queue and add them to the end for (int i = 0; i < n - k; i++) { int curr = queue.front(); queue.pop(); queue.push(curr); } // Print the elements of the queue for (int i = 0; i < n; i++) { int curr = queue.front(); queue.pop(); cout<<curr<<" "; queue.push(curr); } cout<<endl; } int main() { // Example 1 queue<int> q1; int k1 = 3; q1.push(10); q1.push(15); q1.push(31); q1.push(17); q1.push(12); q1.push(19); q1.push(2); reverseKElements(q1, k1); // Example 2 queue<int> q2; int k2 = 2; q2.push(12); q2.push(14); q2.push(16); q2.push(7); q2.push(9); reverseKElements(q2, k2); }
31 15 10 17 12 19 2 14 12 16 7 9
Complexity Analysis for Reversing the First K elements of a Queue
Time Complexity = O(n + k)
Space Complexity = O(k)
where n is the number of elements in the queue.