Rectangle Overlap LeetCode Solution

Problem Statement: Rectangle Overlap LeetCode Solution – says that An axis-aligned rectangle is represented as a list, [x1, y1, x2, y2], where (x1, y1) is the coordinate of its bottom-left corner, and (x2, y2) is the coordinate of its top-right corner. Its top and bottom edges are parallel to the X-axis, and its left …

Read more

Maximum Population Year LeetCode Solution

Problem Statement

Maximum Population Year LeetCode Solution says that – You are given a 2D integer array logs where each logs[i] = [birthi, deathi] indicates the birth and death years of the ith person.

The population of some year x is the number of people alive during that year. The ith a person is counted in the year x‘s population if x is in the inclusive range [birthi, deathi - 1]. Note that the person is not counted in the year that they die.

Return the Maximum population Year.

 

Example 1:

Input:

 logs = [[1993,1999],[2000,2010]]

Output:

 1993

Explanation:

 The maximum population is 1, and 1993 is the earliest year with this population.

Example 2:

Input:

 logs = [[1950,1961],[1960,1971],[1970,1981]]

Output:

 1960

Explanation:

 
The maximum population is 2, and it had happened in years 1960 and 1970.
So the maximum population year is 1960.

 

Constraints:

  • 1 <= logs.length <= 100
  • 1950 <= birthi < deathi <= 2050

 

ALGORITHM –

  • In order to Find the Maximum Population Year. First, we will focus on the total number population in each year by checking in each interval of the given matrix and will find the maximum count and return the year of maximum value. If the count is the same then we simply return the previous year(earliest year).

Approach for Maximum Population Year LeetCode Solution

– First, we will create one array of size 101 because the constraints of years lie in the range 1950 to 2050.

–  after that, we will run a loop from 0 to the length of logs and will increase the count of the array at index(logs[i][o]) by 1 and decrease the count of the array at index (logs[i][1]) by 1

– again we will run a loop from 0 to the length of the array and make one variable prev count and update each element of the array by array+prev and update prev by prev = array[i].

– at last, we will run a loop and find the maximum value in the array and return that particular index(index+1950). Hence find the maximum population year.

Maximum Population Year Leetcode Solution

Code:

Maximum Population Year Python Leetcode Solution:

class Solution:
    def maximumPopulation(self, logs: List[List[int]]) -> int:
        arr = [0]*101
        for i in range(len(logs)):
            
            arr[logs[i][0]-1950] += 1
            
            arr[logs[i][1]-1950] -= 1
            
        
        previous = arr[0]
        for i in range(1,101):
            arr[i] += previous
            previous = arr[i]
            
        print(arr)
        maxi = 0
        ind = 0
        
        for i in range(len(arr)):
            if arr[i] > maxi:
                maxi = arr[i]
                ind = i + 1950
        print(maxi)        
        return ind

Maximum Population Year Java Leetcode Solution:

class Solution {
    public int maximumPopulation(int[][] logs) {
        
        int[] arr = new int[101];
        for(int i = 0;i < logs.length;i++){
            
            arr[logs[i][0]-1950] +=1;
            arr[logs[i][1]-1950] -=1;
            
            
        }
        
        int prev = arr[0];
        for(int i=1;i<arr.length;i++){
            
            arr[i] += prev;
            prev = arr[i];
            
        }
        
        int ind = 0;
        int maxi = 0;
        
        for(int i=0;i<arr.length;i++){
            
            if(maxi < arr[i]){
                
                maxi = arr[i];
                ind = i+1950;
            }
        }
        
        
        return ind;
        
        
    }
}

Complexity Analysis of Maximum Population Year Leetcode Solution:

Time Complexity

The Time Complexity of the above solution is O(n).

Time Complexity

The Space Complexity of the above solution is O(1).

As we have made an array of length = 101. So we can consider it constant

 

 

 

 

 

 

Binary Tree Inorder Traversal LeetCode Solution

Problem Statement: Binary Tree Inorder Traversal LeetCode solution Given the root of a binary tree, return the inorder traversal of its nodes’ values. Example 1: Input: root = [1,null,2,3] Output: [1,3,2] Example 2: Input: root = [] Output: [] Example 3: Input: root = [1] Output: [1] Constraints: The number of nodes in …

Read more

Is Graph Bipartite? LeetCode Solution

Problem Statement Is Graph Bipartite LeetCode Solution- There is an undirected graph with n nodes, where each node is numbered between 0 and n – 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has …

Read more

Design Add and Search Words Data Structure LeetCode Solution

Problem Statement: Design Add and Search Words Data Structure LeetCode Solution says – Design a data structure that supports adding new words and finding if a string matches any previously added string. Implement the WordDictionary class: WordDictionary() Initializes the object. void addWord(word) Adds word to the data structure, it can be matched later. bool search(word) Returns true if there …

Read more

Maximum Population Year LeetCode Solution

Problem Statement: Maximum Population Year Leetcode Solution says that – You are given a 2D integer array logs where each logs[i] = [birthi, deathi] indicates the birth and death years of the ith person. The population of some year x is the number of people alive during that year? The ith person is counted in the year x‘s population if x is …

Read more

Best Meeting Point LeetCode Solution

Problem Statement: Best Meeting Point Leetcode Solution says – Given a m x n binary grid grid where each 1 marks the home of one friend, return the minimal total travel distance. The total travel distance is the sum of the distances between the houses of the friends and the meeting point. The distance is calculated using Manhattan Distance, …

Read more

Minimum Path Sum Leetcode Solution

Problem Statement The Minimum Path Sum LeetCode Solution – “Minimum Path Sum” says that given a n x m grid consisting of non-negative integers and we need to find a path from top-left to bottom right, which minimizes the sum of all numbers along the path. We can only move …

Read more

Translate »